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A brief review of existing ideas on the nature of the thermophoresis of solids in gases is given. A method for calculating the rate 
of thermophoresis of coarse solids is described. A procedure for analysing experimental data and for choosing a high-quality 
material on the basis of this is proposed. �9 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The kinetic theory of gases enables one, fairly simply, to calculate the rate of thermophoresis of a small 
body, which, as is assumed, slightly perturbs the state of the gas surrounding the body. The generally 
accepted formula for the rate of thermophoresis under so-called free-molecular conditions has the form 
[1, 21 

3 rl gradT (1.1) 
Vf,,, = -~PTo I + n~18  

where rl is the dynamic viscosity, p is the density of the gas, e is a coefficient characterizing the 
accommodation of momentum when gas molecules interact with the surface of the condensed phase, 
To is the temperature at the centre of a spherical body, and gradT is the small constant temperature 
gradient far from the body. Some disagreement in the numerical factor in the denominator of formula 
(1.1) will be unimportant later. 

The classical representation of the nature of thermophoresis of large bodies in gases is based on the 
discovery by Maxwell [3] and Reynolds [4] of the thermal slip of a gas along the interface. Epstein [5] 
made this the basis of the solution of the problem of the thermophoresis of large bodies as the boundary 
condition connecting the problem of the flow of a gas around a body and the problem of the temperature 
distribution, when a constant temperature gradient is maintained far from the body. Epstein's formula 
has the form 

V ~ -  3 q gradT ~=_K, 
4pTol +~/2 '  r (1.2) 

where ~r and r,/are the thermal conductivities of the gas and of the condensed phase. 
Epstein's paper gave an impetus to research on the nature of the thermophoresis of large bodies in 

gases. (When speaking of large bodies, we mean that the Knudsen number Kn = L/R, where ~. is the 
mean free path of a gas molecule and R is a characteristic dimension of the body, is much less than 
unity.) Experiments subsequent to this showed that the mechanism of Maxwell slip does not exhaust 
all possible reasons for the phenomenon. In particular, this approach did not enable the experimentally 
observed unexpectedly high rate of thermophoresis of highly heat conducting bodies to be explained. 
Hence, a theoretical investigation of the problem has continued, and there is a considerable number 
of papers on this topic in the literature at the present time (see the reviews [6, 7]), in which various 
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approaches and methods of calculation are employed. The results have turned out to be not completely 
identical. However, the general and undisputed conclusion is that the expression for the rate of 
thermophoresis of large bodies when Kn = 0 has the form (1.2), apart from a numerical factor, which 
must be borne in mind when analysing any experimental and theoretical data on the thermophoresis 
of large bodies. 

In the opinion of many researchers, a modified Epstein method gives the most satisfactory results. 
This is based on the solution of the problem which includes the Navier-Stokes and Fourier equations 
with boundary conditions which take slip into account. It is also more transparent physically. The paper 
by Waldmann and others [8] (see also [9]) turned out to be an important stage in the development of 
this method. In these papers, to obtain the boundary conditions, instead of using an heuristic approach, 
a method was proposed based on the use of the thermodynamics of irreversible processes. The boundary 
conditions in this case are obtained automatically. This approach immediately enabled all the 
discrepancies which arose previously when formulating the boundary conditions to be eliminated, and 
enabled them to be extended to the case of volatile bodies in gas mixtures. 

We will briefly recall the procedure for calculating the rate of thermophoresis of large bodies in gases 
using the Epstein-Waldmann method. 

2. F O R M U L A T I O N  OF THE P R O B L E M  

To solve the problem of the thermophoresis of large bodies we will consider the Stokes problem for a 
sphere around which a gas is flowing, at an infinite distance from which a small constant temperature 
gradient gradT is maintained. We will confine ourselves to the case of non-volatile solids. This means 
formally that the surface of the sphere is impermeable for gas molecules, i.e. the normal component 
of the gas velocity at the body surface must be put equal to zero. (By considering the case of fairly large 
bodies, for which Kn r 1, we can, by taking well-known precautions, drop certain terms proportional 
to Kn not only during the calculations but also at the stage of formulating the problem.) Hence, for 
the normal component of the velocity we have 

o r = 0 (2.1) 

The boundary condition for the tangential component of the gas velocity is less obvious. We will write 
it in the form [9] 

. ,  R ~  _ r I 1 ~ T + T i 3 1"1 1 b T -  T i (2.2) 
O~ = -~n~ t'"6~~ 2" + 2pToRc30 2 

The first two terms in expression (2.2) describe viscous and thermal slip. They are also contained in 
the Epstein model. Note, however, that we have made certain refinements here, namely: in the expression 
for the component of the viscous stress tensor CrO we have taken into account, in addition to the usual 
stresses, also the thermal stress ~0 ~, in the second term, instead of the numerical coefficient 3/4, the 
thermal slip coefficient kTs is used. Moreover, we have written the expression for the tangential derivative 
of the temperature in more general form. However, the most important difference is the occurrence 
of the third term, which is not in the Epstein model. 

We have used the following notation have: v is the gas velocity with respect to the body (the subscripts 
r and 0 indicate the radial and tangential components respectively), Cm is the viscous slip coefficient, 
and T, Ti and To are the temperature outside, inside and at the centre of the sphere respectively. 

We will formulate the boundary conditions for determining the temperature in the Laplace problem. 
The normal component of the heat flux q at the boundary is continuous: 

qr = qir" or OTlOr = ~OTi l3r  (2.3) 

For the temperature we have (this is essentially the Smoluchowski relation [10] in improved form) 

T -  T i = KmClC,(q + qi)J2 (2.4) 

where Ct is the temperature jump coefficient. 
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3. THE DISTRIBUTION OF THE GAS VELOCITY AND 
THE T E M P E R A T U R E  

Expressions for the components of the gas velocity in the neighbourhood of the body and for the force 
with which the gas acts on the body, can be written in the following standard form 

R 3 _v0[ l_a_R_ R 3 
= r r b ( r ) ] S i n 0 ;  F 8nrlRav o Or v0[1 -2a -R+2b( r  ) ] cOs0, 1)0 = = 

where ~)0 is the flee-stream velocity of gas. In equilibrium, taking the boundary condition (2.1) into 
account, we have for the constants of integration: a = 0 and b = -1/2. 

We will write the temperature distributions inside and outside the body in the form 

T, = T o + ( A r ) ,  T = T o+(gradTr)+(Br) (R/r)  3 (3.1) 

From conditions (2.3) and (2.4) we have 

Hence we obtain 

-2B+gradT = ~A, B+gradT-A = C,A~Kn/2 

A = 3  1 1 1+~/2 1 + ~l----------~ grad T, B = ~ 1 gradT (3.2) 

Finally, we have for the thermal stress in the gas 

o~) 3 n 2 F I 01oT 
= rpToLr- ~j~ = 

9 ~12 1 - ~  
2"-RpTo I + ~'j2 sinogradr (3.3) 

4. RATE OF T H E R M O P H O R E S I S  

Using Eq. (2.2) and bearing in mind that the equilibrium velocity of the body (the rate of thermophoresis) 
is equal to the equilibrium value v0, taken with the opposite sign, we have 

. rl gradT f l + ~Kn[~C,+3  1 v o :  (4.1) 

We recall that, as a result of using the condition that the Knudsen number is small, we have dropped 
a number of terms, including also in expression (4.1). We must, however, emphasise that a situation is 
possible when the thermal conductivity of the body is so high that even for small Knudsen numbers 
~Kn -> 1 (this situation occurs, for example, for metal bodies). Hence, terms containing the factor ~Kn 
are retained. If the thermal conductivity of the body is not too high compared with the thermal 
conductivity of the gas, the second term in braces in expression (4.1) is also small compared with unity 
and can be neglected, which leads to the refined Epstein formula (1.2). 

Relation (4.1) can be written in the form of the following expression for the reduced rate of 
thermophoresis in a continuous medium 

VthT0(I + ~12) 
V~ = = krs(8)(1 + ~KnA(e, a)) 

rlp-tgradT 
(4.2) 

We will also give an expression for the reduced rate of thermophoresis in the free-molecule limit 

V~To 3 I 
V ~ -  = 

~p-lgradT 41 +/t8/8 
(4.3) 
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Table 1 

~t e = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 -18.1 16.6 26.8 3.2 33.4 34.5 35.2 35.5 35.6 

0.2 -43.5 -7.76 3.47 8.59 11.4 13.1 14.2 14.9 15.4 

0.3 -51.9 -15.8 -4.33 1.04 4.05 5.92 7.16 8.03 8.65 

0.4 -56.2 -19.8 -8.25 -2.76 0.36 2.32 3.64 4.57 5,26 

0.5 -58.8 -22.3 -10.6 -5.05 -1.87 0.14 1.51 2.48 3.21 

0.6 -60.5 -23.9 -12.2 -6.59 -3.37 -1.32 0.08 1.08 1,83 

0.7 -61.7 -25.1 -13.3 -7.70 -4.45 -2.37 -0.95 0.07 0.83 

0.8 -62.7 -26.0 -14.2 -8.54 -5.27 -3.17 -1.73 -0.70 0.08 

0.9 -63.4 -26.7 -14.9 -9.21 -5.92 -3,80 -2.35 -1.30 -0.51 

1 -64.1 -27.3 -15.5 -9.75 -6.44 -4.31 -2.85 -1.79 -0,99 

1 

35.6 

15.8 

9.11 

5.77 

3.75 

2.40 

1.42 

0.68 

0.10 

-0.38 

To calculate the kinetic coefficients occurring in (4.1), we will use the results of a calculation obtained 
from the data given in [11] for the solid-sphere model 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
krs 0.81 0.87 0.93 0.98 1.02 1.07 1.11 1.15 1.18 1.22 
C m 18.20 8.78 5.62 4.03 3.07 2.42 1.95 1.60 1.32 1.09 

and the formula [12] 

C,(r = 1.78(21r I)(I +0.162ct) 

Here ct is a coefficient representing the energy accommodation when gas molecules interact with the 
surface of the condensed phase. 

The values of A(e, t~) obtained are given in Table 1. 
Table 1 enables us, by specifying the ratio of the thermal conductivities of the body and the gas ~, to 

calculate from formula (4.2) the rate of thermophoresis of bodies with Kn ~ 1 as a function of the 
Knudsen number over the whole range of values of tx and e from 0.1 to 1. In principle, any possible 
curve of Vthr(Kn) when Kn ~ 1 must lie inside the region bounded by the two rays. For example, if we 
confine ourselves to the range of values of ct and e from 0.8 to 1, the curve of the reduced rate of 
thermophoresis  Vth r against the Knudsen number must intersect the ordinate axis at a point with ordinate 
lying between the values 1.15 and 1.22, and its slope, defined by the function A(a, e) must lie between 
the values 0.68 { and -1.79 { (Fig. 1). The experimental points obtained by Kanki and Iuchi [13], do 
not satisfy either of these conditions and must be rejected. The same can be said of the results of 
measurements for { = 0.8 [13] (Fig. 1), and also for { = 0.3 [14, 15], presented in Fig. 2. Only the data 
for ~ = 8.13 [16] (Fig. 3) show good agreement with the predictions of the model: the experimental 
points lie on the calculated curve e = 1, t~ = 0.92, which correlates excellently with existing ideas and 
the results of other measurements. In all the figures the continuous semi-bold straight line corresponds 
to the calculated straight line for values of e = 0.8 and c~ = 1, while the dashed line is for e = 1 and 

= 0.8; the arrows on the right indicate the corresponding values of Vfm r. The dash-dot lines are linear 
approximations of the experimental data obtained by the method of least squares. 

Unfortunately, since data of other experiments in the region Kn ~ 1 is not available, it is not possible 
to analyse them. 

5. D I S C U S S I O N  OF T H E  RESULTS 

During the last few years an estimate of the experimental data by comparing them with the interpolation 
formula derived by Talbot et al. [17] has become widely used. It is obvious, however, that this interpola- 
tion, at least when Kn ~ 1, where it is based on the clearly unsatisfactory Brock formula [18], is 
unconvincing. A more important consideration is the fact that the existing experimental methods of 
measuring the rate of thermophoresis give a quite considerable spread of data, so that such a comparison 
may in the best case only indicate qualitative agreement between the model [17] and experiment. (This 
also applies, incidentally, to a comparison of experimental results even with the most reliable theoretical 
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data, for example [19].) Nevertheless, may researches assert that the experimental data they have obtained 
agree completely with the theoretical data. The method proposed in this paper for estimating the results 
of measurements (and even of the procedures themselves) enables one to make a selection uniquely 
and practically independently of their accuracy, i.e. to discard unsatisfactory experimental data, thereby 
retaining essentially admissible data. When the criteria of reliability are satisfied, the possibility is opened 
up of fairly accurately estimating the values of the energy accommodation coefficients and the 
momentum when gas molecules collide with the surface of the body (the aerosol particle) by fitting the 
theoretical and experimental curves. 
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